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LETTER TO THE EDITOR

Approximate symmetries and approximate solutions for a
multidimensional Landau-Ginzburg equation

N Euler, M W Shul’gat and W-H Steeb

Department of Applied Mathematics and Nonlinear Studies, Rand Afrikaans University,
PO Box 524, Auckland Park 2006, South Africa

Received 10 June 1952

Abstract. We give the approximate symmetries for the multidimensional Landau-
Ginzburg equation 33, 8%u/dz} + Ju/dzy = ay+ agu + cu™ where n € R
and 0 < ¢ <€ 1. We also construct approximale solutions for this nonlinear equation
using the approximate symmetries.

The problem of generalizing asymptotic methods (Krylov-Bogolubov method) for
solving nonlinear partial differential equations is well documented in the literature
(Bogolubov and Mitropol'skii 1974). The asymptotic method is mainly applied to
partial differential equations in two independent variables (Kevorkian and Cole
1980). Group-theoretical reduction can be used to reduce the number of independent
variables of a multidimensional partial differential equation. After this reduction the
asymptotic method can be applied to the reduced equations.

Recently the concept of approximate symmetry was introduced (Fushchich and
Shtelen 1989, Baikov er af 1989). Within this approach it is possible to obtain
approximate solutions of a given multidimensional partial differential equation
(Mitropol’skii and Shul’ga 1988). The main steps of this method are the following:

(1) Find the Lie symmetries of the given partial differential equation whereby the
number of independent variables (dimensions) may be reduced by group-theoretical
methods.

(2) Find an approximate system of partial differential equations for the given
partial differential equation or for the dimensionally reduced partial differential
equation.

(3) Find the Lie symmetries of the approximate system such that the approximate
system can be reduced to a partial differential equation with two independent variables
or an ordinary differential equation.

(4) The approximate reduced system can then be investigated to obtain exact
solutions. If exact solutions cannot be found for such a (nonlinear) system the
asymptotic method can be applied.

Consider the general system of nonlinear partial differential equations

du; 87 u.;
T i A J = 0.
FV (I"ul’3.’81',...,833,'131:"2...81:") (1)
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We assume that F, is a smooth function with respect to the arguments, where

v=1...,¢i=1...,mj=1...,nand r=4+ 4+ - -+i.
We represent the solution of (1) in the following form:

v =gy +eugy; + ety + 0(eh). @

Substituting (2) into (1) and separating out with respect to £ (up to £2) we obtain
the coupled system of partial differential equations

ou 03 BTU 0)+
F‘(U)y ( (0); (05 ) =0 (3)

Ty Ugyis —F— e+
iy S0y ’ ’
Oz, Ow; Oz, ... By,

Bu; Ouppy,
@i G,
Fay ("’“’*”“ww%w ax; * Ox;

LSRRI 9"y
G} Ok ) =0 “
Ox; 0z, ...0x; Oz;dx,; ...0z;

Ouy, Oupyy; Ouggy
(0 (1)s (2)j
Fay (“’w HOi YW Y3 Ty 0 T, Bz,
O ugy; ), 0" u); ) -0
8z, 0z, ...0=,;  dz; 8z, ...0x; Oz, 0z ...0x; '

&)

Definition 1. A Lie point symmetry of the coupled systems (3) and (4), which
approximates (1) is a first-order approximate symmetry of (1).

Definition 2. A Lie point symmetry of the coupled systems (3), (4) and (5), which
approximates (1) is a second-order approximate symmetry of (1). '

We investigate the first-order approximate symmetry of the multidimensional
Landau-Ginzburg equation

2 2 2 8
O4u Ou a°u :=a1+n2u+ﬁun (6)

dx? + dxl + ax} + 3z,
which describes the kinetics of phase transitions where a; and a, are real constants
and 0 < ¢ < 1. Equation (6) admits the following Lie symmetry vector fields (Euler
and Steeb 1992) where we consider two different cases.

Case 1. For arbitrary a,,n,,m € R the Lie algebra is spanned by the seven vector
fields (translations and rotations)

a o J o
= —— _— —_—— N Z —_
2 Oz, 22 Ox, Zs Oz, 47 Ba,
] a 8 o a a
Zs = Tgg 1y, 26 = Trgo = ®35g, 21 = T3 ~ s,
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Case 2. For arbitrary n with a; = e, = 0 the Lie algebra is spanned by the vector
fields Z,,...,Z; and the scaling vector field

Zo= 2o e 24 (o mpe e b ul ™
A igg, -7 ”43 You-

We construct the approximate system for (6). Let u = uy + euy. Since we only
have one dependent variable, we set uw. = uy, gy = u;. The approximate system
of partial differential equations is then given by

&y B, B "u Ay,

dx? + ozl + ax} + Oz, = ot azy

a? 8t 8 ®
u | 9y uy U _ n

dx? + 8} + dxz? T3 8z, Gzt + Y -

For arbitrary » and arbitrary a,, e, the Lie algebra for system (8) is spanned by the
symmetry vector fields Z,,..., Z; and

Zy = f(m)aa—th ©

where ¢ = (x,,z,, T3, ,) and f satisfies the linear partial differential equation

82 82 5 a3
{+ L+ aé+*%—%ﬂ (10)

For the scaling symmetry of system (8) we consider the following cases:
Case 1. For a; # 0 and q, # 0 system (8) is not scale-invariant.

Case 2. For a, # 0 and g, = 0 system (8) admits the following scaling vector field:
Zm +2:n +2u +2(n + Du g (11)
46 ”8 18y,

together with Z,, ..., Z,, where Z; is given by (9).

Case 3. For a; = 0 and a, ¥ O system (8) admits the following symmetry vector
fields:

8
Zg = uu?aTD + nu (12)

B,
8
Zy = (f(a:)+uu)5—1; (13)

together with Z,, ..., Z,, where Zg is given by (9). Here f must satisfy (10). Z, is
a scaling symmetry.
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Case 4. For a; = 0 and a, = 0 system (8} admits the following scaling vector field:

3
a a E] a

1
ha +h 7 x '
together with Z,,..., 2y, where Z; s given by (9). Here b is an arbitrary real

constant.

We give the Lie symmetry vector fields for (10) in order to find exact solutions
of {10). Our aim is to obtain some exact forms for the symmetry vector field Z, of
system (8). From the Lie symmetry vector ficld ansatz

Z= E&(z f) o+ f)

we find that the smooth coefficient functions £, £,, &5, £y, n are given by

£.o= h:r + g%+ cppTy + ez, + dy £ = bz, + gyzy — c;pTy+ cp®a+ d,

-1 - L= 5' ' 12

{3 = bzy+ 9334~ ey~ enTr + dy £, =2bzy +dy

1= [1{g121 + 6,22 + 9323) + 2azbz,+ ] £ .

Here c;.¢5,¢43,9:,d;,0 (i =1,...,3 7=0,...,3) and ¢ are real constants with

& + ¢4 + 4y = 1. With the help of these Lie symmetry vector ficlds we find the
following exact solutions for (10):

c=1:

f(z) = (- z)exp(a,zy) (15)

PR
f(z) = a7 exp (ﬂm PRLI) ) (16)
4
c=-2
Ry

flw) =2 a - z)exp (am + ("‘4;:) ) amn
= as.

f(z) =lej(a-z) + c;] explayzy) (18)

F(=) = {e(2)"H? 4 ey exp(cay) (19)
a, > ¢l

f(2) = {e;expl\/a; — c(a- 2)] + e, exp[~\/a; - c(a - z)]} exp(ezy) (20)
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a, < c
f(x) = {e cosl\/c = az(e- 2)] + ey 8inf /e — ay(a- )]} explca,) @1)
a, £ ¢

f(z) = c;exp(ayzy) . (22)
Here ¢, and c, are real arbitrary constants, ¢ := (z;,x,,z;) and
a T i=ogx) 4+ aye, + ayxs a?=1.

We now obtain approximate solutions for (6) by finding exact solutions for system
(8). For the case a; = O with a, and = arbitrary we note that u; = 0 satisfies the fisst
equation of system (8) trivially. By inserting this solution into the second equation of
system (8) we obtain (10) with f = u;. Approximate solutions for (6) thus take the
form

u(z) = e f(z) (23)

where different functions for f are given by (15)~(22).
In order to investigate other exact solutions for system (8), using the Lie symmetry
vector fields listed above, we make the following ansitze for system (8):

uy(x) = @y(w()) fi(z) + g,(z) (24)
u{x) = pr(w(z)) fo{z) + g2(x) (25)

where w = (wy,w,,wy). It follows that

3 .2 3
g:’j‘l 3:; £+ lgf: 391 + [Jz;l 33:;21 ; (g‘;’:) X:l 6_99
> By - By By 288, O~ By dw;
+2 3 500, B, 2~ Bz, ax,.]fl*'zga_"za_wl‘?
(G<ky=t i=1 i=1 j=1 %Yi
tedfitAg-e—alefital=0 (26)

and

3 3 2 3 2 3
B, Buw; 8f, , g 8, Gu; B,
=22 tog e+ *+{§3 P +JE_IEA“’:’

—1f
j=1 Bw Oz, j=1 Bwf i=1 oz, f]
3 3 3
2 Z Bwawk « Bz, 3x]f2 22 x,.,Zaw._x_,.
(J‘(k}- i=1 J:] 1
+ e Afy+ Agy - ay [‘szz +al-lefita]* =0 @7

where

2 2 82
A= 6 +?___+
ozt ' 8xi’
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To solve (26), (27) we need to find the functions w, f;, f,, ¢, g,. These functions
are obtained by means of the Lic symmetry vector fields for system (8) listed above.
Let us now consider system (8) with a,; # 0 and a, = 0. In order to find w and the
functions fy, f,, g;, g, we have to solve the following system:

dzy _ _de, _  dzy  dwy,  duy,  du;  _dr
Lzou)  Lou)  &Glou)  &lzu) T mlz,u) — miz,u) 1
where u = (ug,uy), § = (£1,€5, &5, £,) and n = (ny,7,) are the coefficient functions

of the Lie symmetry vector ficld with 7 the Lie group parameter. We make use of
the translations, rotations and scaling symmetry (11) to obtain

. 2 -
w(2) = T/x—j wy(z) = z‘: wy(z) = ~Inz, + tan~! (g :)
fl(iﬂ) =z, falz) = a:z‘+1 gl(:r:) =0 g,(z)=0
with

ZEaf+a%+a§=l ﬁzEﬁf+ﬁ§+ﬁ§=1 Y=+ +i=1
a-BE=oyfi+ a8+ B =0 By=0m+ Byt By =0
V=0 + 10+ 10 = 0.

By inserting the above-obtained w, f,, f5, g9, 9; into (26) and (27) we obtain the
coupled system of partial differential

oy, %y no10%0r ., 9%
Bt | e T\ TN 5 TGS e,
2
e 2P L (6 w) 2P 9 g = 28
741 By +( Wz)aw2 B, te—a (28)
az‘p 3299 _ aztp 32(,0
awfz Fhor g+ (- l) T+ '“laulaiz
2 3
1 B¢, e, 9y
R Wk it 6 — Do o S, 47 PP 1 =0, (29
zwl 3\'-01 + ( wZ) 60}2 30)3 "Pl ((.d) + (Tl + )‘PZ ( )

Let us assume that ¢, depends only on w,. Then (28) takes the form

d2¢) d‘ﬂ] N
Geiy ——2 - (6 — Wy ] —" 4 —a, =1, (30
zdw% + 1 szwz'f"Pl 1 (U

For arbitrary a, (30) has the special solution ¢;{w,) = ;. It follows, from the
ansatz (24), that

uy(z) = a2, (31)

For @y = 6 we obtain the special solution ¢ {(w;) = w, for (30) so that, from the
ansatz (24), we have

ug(z) = 2. (32)
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To find a special solution for (29) we assume that ¢, and ¢, depend only on w, with
a; = 6. From (29) it follows that

d2
dop T2 (6 ) T2 2+ (n+ Dy - wf =0. (33)
2

With n = —2 we obtain the solution
@2(w) = glw)wy Pexp (o) (34)
where g satisfies the ordinary differential equation

dg wy 2 -
dor = ke e (<) + ey oxp (- fesy)

with ¢; an arbitrary constant.

We can thus summarize as follows. For n = -2, a; = 6 and e¢; = 0 an
approximate solution for (6) is given by

T 5 dav
u(e) = o +ea)’ |~ - § wy 12 Z( DAV (%)

N+t
-1/2 d -3/2
W /24N £Xp (%WZ),/d T (w; / yexp (—%wz) dw,

s v
wy 1
+2¢]§2”1x3x---x(1+2z/)+ch' (35)

Here ¢,, ¢, are arbitrary constants, w, = #*/z, and N =1,2,...
To find another solution for (29) we assume that ¢, depends only on w, with
@1(w,) = a;. Here a, is arbitrary. From (29) it follows that

o, 1 dp, 1 -3/2 _
F At it A T 6)
where n = —2. We obtain the general solution of (36) as
‘ -3f2
orten) = exp (bo) [oy [exp (bt 4 o] ~20772 D)

where ¢, and c, are arbitrary constants.
We can thus summarize as follows. For n = —%, a, arbitrary and a, = 0 an
approximate solution for (6) is given by

u(e) = 2, + e {oxp (o) [e [ omp (hol) do # o] =277} 39

where wy(z) = (a- )/ /T4
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Let us now construct an exact solution for system (8) with n, a; and e, # 0

arbitrary. We make use of the translation symmetries and the Lie symmetry vector
field (9) where f is given by (15) with o; =1 and oy = a; = 0, ie.

Zy =T, e"P(az%)g—'
Using the ansétze (24) and (25) as well as

wiz)=a- -z wiz)=p-= wi(z) = x4
A@=1 H@=1 a@=0 g = (s =)
2 a;
equations (26) and (27) reduce to _
8p .
:;1 + ws —a —a,p, =0 (39)

%y
Bwl

8, B I |
50 2 Z 4 szz + oy ‘az‘Pz"“Pl + a—zexp(a2w3) =40. (40)

1+3
a

Let us assume that ¢; depends only on w,. With this assumption we obtain the
general solution for (39) as

ACE —g":' + ¢; exp(ayws) .

Here ¢, is an arbitrary constant. From the ansatz (24) it follows that
upe) = =gl +  explazes)

Equation (40) reduces to the ordinary differential equation

d n
af— —a,00 + — exp(a2w3) - (—ﬂ + ¢ exp(a2w3)) =0 (41)
] a;

with the general solution

hid n—1
1 1
st = Lo~ (-3) (2) 3 (2)
zn:_—c{ 1’1( al)ﬂ-—'j [( 1) ]+c]ex (aw)
¥ j=2 (i — Da, _:1; CXPLLT — L)aaws] T 3| €Xplayws

j
where c, is an arbitrary constant.
We can thus summarize as follows. For n, a; and a, # 0 arbitrary an approximate
solution for (6) is given by

u(z) = —-1 + ¢ exp(a2:c4) + 5{——l~ explazzy) — (‘ﬂ)" (l)

aj a; a3

n-1 n j n-3
nf o _a _nf a
+[Cu( 2) e ()

x exp[(§ — Dayz,] + ‘-‘2] exP(ﬂzxa)} . {42)
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All approximate solutions obtained for the multidimensiona! Landau-Ginzburg
equation (6) satisfy the equation up to order e, since we have obtained these solutions
from first-order approximate symmetries. This method of finding approximate
solutions can obviously also be applied to other multidimensional nonlinear partial
differential equations or systems. Approximate symmetries are of special importance
when the starting equation or system does not admit interesting Lie symmetry vector
fields.
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