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LETTER TO THE EDITOR 

Approximate symmetries and approximate solutions for a 
multidimensional Landau-Ginzburg equation 

N Euler, M W Shul'gat and W-H Steeb 
Department of Applied Mathematis and Nonlinear Studies, Rand Afrikaans Universily, 
PO Box 524, Auckland Park 2w6, Soulh Africa 

Received 10 June 1992 

AhstmeL We give the approximate symmetries for the multidimensional Iandau- 
Ginzburg equation C~,,8'u/azf + aulazl  = at + azu + cu" witere n E R 
and 0 < c a 1. We also mnstruct approximale solutions for lhis nonlinear equation 
using the approximate symmetries 

The problem of generalizing asymptotic methods (Krylov-Bogolubov method) for 
solving nonlinear partial differential equations is well documented in the literature 
(Bogolubov and Mitropol'skii 1974). The asymptotic method is mainly applied to 
partial differential equations in two independent variables (Kevorkian and Cole 
1980). Group-theoretical reduction can be used to reduce the number of independent 
variables of a multidimensional partial differential equation. After this reduction the 
asymptotic method can be applied to the reduced equations. 

Recently the concept of approximate symmetry was introduced (Fushchich and 
Shtelen 1989, Baikov d a1 1989). Wlthin this approach it is possible to obtain 
approximate solutions of a given multidimensional partial differential equation 
(Mitropol'skii and Shul'ga 1988). The main steps of this method are the following: 

(1) Find the Lie symmetries of the given partial differential equation whereby the 
number of independent variables (dimensions) may be reduced by group-theoretical 
methods. 

(2) Find an approximate system of partial differential equations for the given 
partial differential equation or for the dimensionally reduced partial differential 
equation. 

(3) Hnd the Lie symmetries of the approximate system such that the approximate 
system can be reduced to a partial differential equation with two independent variables 
or an ordinary differential equation. 

(4) The approximate reduced system can then be investigated to obtain exact 
solutions. If exact solutions cannot be found for such a (nonlinear) system the 
asymptotic method can be applied. 

Consider the general system of nonlinear partial differential equations 
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We assume that F, is a smooth function with respect to the arguments, where 
Y = 1,. . . ,q,  i = 1,. .. ,m,  j = 1,. . . ,n and T = i, + i 2 +  ...+ i,. 

We represent the solution of (1) in the following form: 

Substituting (2) into (1) and separating out with respect to E (up to E' )  we obtain 
the coupled system of partial differential equations 

Defuririon 1. 
approximates (1) is a first-order approximate symmetry of (1). 

Defrnirion 2. A Lie point symmetry of the coupled systems (3), (4) and (5). which 
approximates (1) is a second-order approximate symmetry of (1). 

A Lie point symmetry of the coupled systems (3) and (4), which 

We investigate the first-order approximate symmetry of the multidimensional 
Landau-Ginzburg equation 

aZu azu aZu au 
ax; ax; ax; ax, - + - + - + - = a, + a2u + E U ~  

which describes the kinetics of phase transitions where a, and a2 are real constants 
and 0 < E Q 1. Equation (6) admits the following Lie symmetry vector fields (Euler 
and Steeb 1992) where we consider two different cas&. 

Case I. For arbitrary al,  a*, n E R the Lie algebra is spanned by the Seven vector 
fields (translations and rotations) 

a 2, = - 
0x4 

a 
2, = - a a 

ax, 8x2 ax, 2 2  = - 2 -- 

a a a a a a z - 2  --I,- 
7 -  ,ax, ax, - 2  --q- Z g = x 2 - - x  - s -  'ax, ax, ax, , axz  
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Case 2. For arbitrary n with al  = a2 = 0 the Lie algebra is spanned by the vector 
fields Z,, . . . , Z, and the scaling vector field 

1 , a  a a 
4 G + " a u  

z, = z(l - n ) z x i -  + ( 1  - n)z axi 
i=l  

We construct the approximate system for (6). Let U = U, + E U ~ .  Since we only 
have one dependent variable, we set yUl1 = U,, u ( , ) ~  = uI. The approximate System 
of partial differential equations is then given by 

a%, a%, aZu, au, - -+ - + T +  - - al +a ,u ,  ax; ax; ax, ax, 

a%, a%, aZu1 aul - -+-+- + - - a2u1 + U;. ax; ax; ax: ax, 
For arbitrary n and arbitrary a l , a 2  the Lie algebra for system (8) is spanned by the 
symmetry vector fields Z, , . . . , Z, and 

where x = (xl,x2, xjrx4) and f satisfies the linear partial differential equation 

a z j  a2f a2f af - + - + -+ - = a 2 f .  ax; ax; ax: ax, 

For the scaling symmetry of system (8) we mnsider the following cases: 

Case 1. For a, # 0 and a2 f 0 system (8) is not scale-invariant. 

Case 2. For al # 0 and a2 = 0 system (8) admits the following scaling vector field: 

together with Z,, . . . , Z,, where Z, is given by (9). 

Case 3. For al = 0 and a2 # 0 system (8) admits the following symmetry vector 
fields: 

together with Z,, . . . , Z,, where Z, is given by (9). Here f must satisfy (10). Z, is 
a scaling symmetry. 
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Cuse 4. For al = 0 and aZ = 0 system (8) admits the following scaling vector field: 

Zy = (1- n b ) C x i G  3 a  + 2 ( 1 -  nb)x - a +2(1+  b ) u o G  a + 2(1+ n)ul-  a 
i = l  aZ4 a 9  

(14) 

,"~G,,,G, W,", U l ,  . . . , z,, where z, s grwa t;j: (9). Eeie b is a:. a ib i : rq  rea! . .  .-"-.I."- ..*+!. '7 

constant. 

We give the Lie symmetty vector fields for (10) in order to find exact solutions 
of (10). Our aim is to obtain some exact forms for the symmetry vector field Zy of 
system (8). From the Lie symmetty vector field ansatz 

we find that the smooth coefficient functions EI,t2.(3rt4, q are given by 

ti = hzi + B;Z; + c;;x; + q3x3 + d ;  

€3 = b ~ 3  + 93x4 - cl321 - C D X ~  + d3 

{; = bx; + c2xs - cl2x1 f czx3 + dz 

(4 2bX4 + do 

0 = [&71"1+ szzz + g3x3) + 2a&4 + 4 f .  
Here c , ~ ,  ct3, cI3, gi. d j ,  b (i = 1, . . . ,3; j = 0, . . . ,3) and c are real constants with 
42 + c& + c:~ = 1. Wlth the help of these Lie symmetry vector fields we find the 
following exact solutions for (10): 

c =  1: 

e =  - 2  

c = az: 
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a2 < c: 

f(x) = {c1 cos[Jc-;l;(a. =)I + c 2 s i n [ f i ( c l .  z ) ] ]  exp(cz,) (21) 

a2 # c: 

f ( x )  = c r e x ~ ( a 2 z 4 ) .  (22) 

Here c1 and c2 are real arbitrary constants, 2 := ( x l ,  x 2 ,  x3) and 

a .  z := alxl + a2x2 + a3x3 a* = 1 

We now obtain approximate solutions for (6) by finding exact solutions for system 
(8). For the case al = 0 with a2 and n arbitrary we note that uu = 0 satisfies the first 
equation of system (8) trivially. By inserting this solution into the second equation of 
system (8) we obtain (10) with f = ul.  Approximate solutions for (6) thus take the 
form 

4.) = E f ( Z . )  (23) 

where different functions for f are given by (15)-(22). 

vector fields listed above, we make the following ansitze for system (8): 
In order to investigate other exact solutions for system (9, using the Lie symmetry 

where w = ( w l , w 2 , w 3 ) .  It follows that 

and 

where 

az a2 a2 
ax; ax;  a$: 

A := - + - + -. 
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'lb solve (26), (27) we need to find the functions w,  f l ,  f2, g,, g2. These functions 
are obtained by means of the Lie symmetry vector fields for system (8) listed above. 
k t  us now consider system (8) with al # 0 and a2 = 0. In order to find w and the 
functions f l ,  f i ,  gl, g2 we have to solve the following system: 

where U = (uU,u1), € = (€1r€2r€3,E4) and rl = (qu,v1) are thecoefficient functions 
of the Lie symmetry vector field with T the Lie group parameter. We make use of 
the translations, rotations and scaling symmetry (11) to obtain 

- --w 1 - ay2 + (6  - w2)- a'p2 - - a'pz - ' p y ( w ) + ( n + l ) p z = 0 .  (29) 
2 l a w ,  aw2 aw3 

Let us assume that 'p, depends only on w2. Then (28) takes the form 

For arbitrary al  (30) has the special solution 'pl(wz) = al .  It follows, from the 
ansatz (24), that 

uu(x) = a1x4.  (31) 

For al  = 6 we obtain the special solution pI(u2) = w2 for (30) so that, from the 
ansatz (24), we have 

(32) uu(x) = a! 2 . 
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'Tb iind a special solution for (29) we assume that 'pl and 'p2 depend only on w2 with 
ai  = 6. From (29) it follows that 

With n = -2 we obtain the solution 

P 2 ( 4  = s(w2)wz-i/z exP ($4 
where g satisfies the ordinary differential equation 

(33) 

(34) 

with ci an arbitrary constant. 

approximate solution for (6) is given by 
We can thus summarize as follows. For n = -2, a i  = 6 and a2 = 0 an 

1 m 

+ 2c, w2" 2" 1 x 3 x . . . x (1 + 2 v )  + c2] . 
"=I 

(35) 

Here cl, cZ are arbitrary constants, w2 = z2/x4 and N = 1,2,. . . . 
'p1(w2) = ai. Here ai  is arbitrary. From (29) it follows that 

To find another solution for (29) we assume that 'p2 depends only on w1 with 

where n = - 5 .  We obtain the general solution of (36) as 

'p2(w1)  =exp(aw:) [c i /exp(-~w:)dwl t c2 I -2a;"' (35) 

where ci and cz'are arbitrary constants. 

approximate solution for (6) is given by 
We can thus summarize as follows. Far n = -2, al arbitrary and a2 = 0 an 

where wi(z)  = (a. .)I&. 
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Let us now construct an exact solution for system (8) with n, al  and Q, + 0 
arbitrary. We make use of the translation symmetries and the Lie symmetry vector 
field (9) where f is given hy (15) with oil = 1 and oiZ = CY) = 0, Le. 

a 
au, 

2, = z1 exp(a,z,)-. 

Let us assume that q1 depends only on w3. With this assumption we obtain the 
general solution for (39) as 

Q 
qpl(w3) = -2 + '1 exp(a2w3), 

Q Z  

Here c1 is an arbitrary constant. From the ansatz (24) it follows that 
Q 

U"(+) = -J + cl exp(a2z4) .  

Equation (40) reduces to the ordinary differential equation 
Q2 

with the general solution 

where c2 is an arbitraly constant. 

solution for (6) is given by 
We can thus summarize as follows. For n, a I  and a2 # 0 arbitrary an approximate 

a1 

Q2 
U(.) = -- + cl exp(a2z4) + E 
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All approximate solutions obtained for the multidimensional Landau-Ginzburg 
equation (6) satisfy the equation up to order E ,  since. we have obtained these solutions 
from first-order approximate symmetries. This method of finding approximate 
solutions can obviously also be applied to other multidimensional nonlinear partial 
differential equations or systems. Approximate symmetries are of special importance 
when the starting equation or system does not admit interesting Lie symmetry vector 
fields. 
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